Indian Statistical Institute, Bangalore B. Math (III) Second Semester 2009-2010 Mid-Semester Examination : Statistics (V) Sample Surveys and Design of Experiments. Date: 23-02-2010 Maximum Score 50 Duration: 3 Hours

1. Consider the following algorithm to select a unit from the finite population $U = \{1, 2, 3, \dots, 150\}$. Suppose we generate a 4-digit observation $d_4d_3d_2d_1$ on a uniform random variable taking values in the set $\{0000, 0001, 0002, \dots, 9998, 9999\}$. We render the observation $d_4d_3d_2d_1$ ineffective if

a) $d_4d_3d_2d_1 = 0000$ or b) $d_4 = 0$ and $d_3d_2d_1 > 900$.

We then generate a fresh observation. We continue this procedure until such times as

- a_1) $d_4d_3d_2d_1 \neq 0000$ and b_1) $d_4 > 0$ or $d_3d_2d_1 \leq 900$; in which case:
- (a) If $001 \le d_3d_2d_1 \le 900$ we define $r = d_3d_2d_1 \mod(150)$. We identify r = 0 with 150. We then set i = r.
- (b) If $d_3d_2d_1 > 900$ we define $r = d_3d_2d_1 \mod(150)$. If $d_3d_2d_1 = 000$ we define $r = 000 \mod(150) = 100$. Set $i = [r + (j - 1) \times 50] \mod(150)$ if $d_4 \in A_i$, j = 1, 2, 3; where we have

Set $i = [r + (j - 1) \times 50] \mod (150)$ if $a_4 \in A_j$, j = 1, 2, 3; where we have $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5, 6\}$ and $A_3 = \{7, 8, 9\}$. Again, i = 0 is identified with 150.

We then select unit *i* from the population $U = \{1, 2, 3, \dots, 150\}$.

Find the probabilities of selection of different units in the population assigned by our algorithm.

2. For a given population of N individuals values x > 0 of an auxiliary variable are known. The units in the population have been numbered or labelled according to nondecreasing order of their x-values. The population is divided into L clusters such that 'smallest' N_1 units are in the first cluster next N_2 units are in the second cluster and so on. Here $\sum_{h=1}^{L} N_h = N$. Let x_{hj} denote the x - value of the *jth* unit in the *hth* cluster $1 \leq j \leq N_h$; $1 \leq h \leq L$. Let $X_h = \sum_{j=1}^{N_h} x_{hj}$, $1 \leq h \leq L$. For practical considerations the L clusters are formed so that X_1, X_2, \dots, X_L are roughly, if not exactly, equal. Such clusters would also be fairly x-homogeneous by their very formation. Suppose we use the following two-step selection procedure. We first select a cluster with probability proportional to x_{hj} . We repeat this two-step procedure n times independently. Based on these n draws (including possible repetitions) suggest an estimator for the population mean $\overline{Y} = \frac{1}{N} \sum_{h=1}^{L} \sum_{j=1}^{N_h} y_{hj}$. Is your estimator unbiased? Obtain and estimate its Mean Squared Error (MSE).

[10]

3. In simple random sampling with replacement (SRSWR(n)) let \overline{y}_d denote the mean based on distinct units. Obtain an unbiased estimator for $Var(\overline{y}_d)$.

[6]

4. An *SRSWOR* sample of size *n* is selected from the population of *N* units. Let $r_i = \frac{y_i}{x_i}, x_i > 0, 1 \le i \le N, \overline{X} = \frac{1}{N} \sum_{i=1}^N x_i, \overline{Y} = \frac{1}{N} \sum_{i=1}^N y_i, \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i, \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i, \overline{r} = \frac{1}{n} \sum_{i=1}^n r_i \text{ and } \overline{R} = \frac{1}{N} \sum_{i=1}^N r_i.$ Show that $Cov(\overline{x}, \overline{y}) = \frac{N-n}{nN} \frac{1}{N-1} \left[\sum_{i=1}^N x_i y_i - N\overline{X} \ \overline{Y} \right].$

Define $e(a, b, c) = a\overline{r}\overline{X} + b\overline{r}\overline{x} + c\overline{y}$, where a, b, c are real numbers. Find conditions on a, b, c such that the estimator e(a, b, c) is unbiased for \overline{Y} . Hence show that Hartley-Ross Estimator $e_{HR} = \overline{r}\overline{X} + \frac{n(N-1)}{N(n-1)}(\overline{y} - \overline{r}\overline{x})$ is unbiased for \overline{Y} .

[10]

5. The purpose of the survey is to estimate $\theta(w_1, w_2) = w_1 \overline{Y}_1 + w_2 \overline{Y}_2$ the given linear combination of the stratum means \overline{Y}_1 and \overline{Y}_2 , of two strata into which the population has been divided, w_1, w_2 are real numbers. *SRSWOR* samples of sizes n_1 and n_2 are to be selected from within strata independently. If the cost function is given by $C = c_1 n_1 + c_2 n_2$, find the best values of n_1 and n_2 for estimating θ . In particular consider the cases a) $\theta = \overline{Y}_1 - \overline{Y}_2$, difference between the stratum means and b) $\theta = \overline{Y}$ the population mean.

[12]

6. Obtain π_i and π_{ij} , first and second order inclusion probabilities, $1 \le i \ne j \le N$ under *Midzuno-Sen sampling design*.

[08]